Genetic parameters and allele frequencies of five new European Standard Set STR loci (D10S1248, D22S1045, D2S441, D1S1656, D12S391) in the population of Romania

Stanciu F, Vladu S, Cutar V, Cocioaba D, Iancu F, Cotolea A, Stoian IM. Croat Med J. 2013 Jun;54(3):232-7. doi: 10.3325/cmj.2013.54.232. PMID: 23771753; PMCID: PMC3692331.

Aim: To establish allele frequencies and genetic parameters for 5 new European Standard Set short tandem repeat (STR) loci in the population of Romania and to compare them with those in other populations.

Methods: DNA was isolated using QIAamp 96 DNA Swab BioRobot Kit and Chelex 100 methods. Polymerase chain reaction amplification was done using Investigator ESSplexPlus Kit (D1S1656, D2S441, D2S1338, D3S1358, D8S1179, D10S1248, D12S391, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, TH01, and vWA). For DNA typing, Applied Biosystems 3500/3500xL Genetic Analyzer was used. Statistical analysis was done using Powerstats, GDA, and Arlequin software.

Results: Power of discrimination and polymorphism information content was highest for two new ESS loci, D1S1656 and D12S391. Comparison of allele frequencies for 5 new ESS loci in Romanian population with previously published population data showed significant differences for all compared populations, with the exception of Hungary. Geographically more distant populations, such as Spain, Sweden, United Kingdom, Germany, and Portugal differed more than closer populations.

Conclusion: New ESS STR loci are very useful for the analysis of forensic samples (persons or traces) due to their characteristics (shortness and high polymorphism). In comparisons with other common STR markers, they have a higher power of discrimination and also higher polymorphism information content, and could be used in any national DNA database.



Valorificarea reziduurilor biologice obținute în urma analizelor medicale pentru studii de Genetică Forensică

Stanciu F, Sevastre O, Tinischi M, Stoian V. Poster la 4th Medical Genetic Romanian Association Conference, 18-20 Septembrie 2008 Craiova, România.


În situații deosebite în care recoltarea de probe biologice de referință este imposibilă prin metodele clasice, analizele medicale efectuate în laboratoarele de screening, respectiv reziduurile biologice obținute în urma efectuării acestora, pot furniza date genetice valoroase cu aplicabilitate în genetica forensică. În acest sens am evaluat o serie de reziduuri in componența cărora pot exista celule nucleate pretabile genotipării, urmărind factori precum timpul și condițiile de păstrare ale probelor biologice în laboratoarele medicale, degradarea ADN-ului, prezența contaminării, rata succesului calculata la numărul de loci amplificaţi, etc.. Am efectuat izolarea totală a ADN-ului folosind o forma adaptata a protocolului AGOWA mag DNA Isolation Kit pentru platforma automată de manipulare a lichidelor Freedom EVO 150. Din extractele de ADN obținute au fost amplificați 16 markeri STR folosind AmpFlSTR Identifiler PCR Amplification Kit. Ampliconii au fost analizați prin electroforeza capilară folosind analizorul ABIPrism 3100. Rezultatele obținute au fost interpretate folosind GeneScan și Genotyper Software conform standardelor specifice analizelor de genetica forensică.



Indirect approach in finding someone’s autosomal genetic profile – a forensic tool in investigating historical cases

Florin Stanciu, Romeo Potorac, Veronica Stoian. Poster at 5th ISABS Conference in Forensic Genetics and Molecular Anthropology. Split, Croatia, 3-7 September 2007.


Starting with an intuitive schema and a rich historical information background, it has been possible to determine the origins and the most probable genetic profile of a male person who lived between 1954 and 1984. In lack of some biological sample from this person, an indirect approach was the most suitable way in determining his genetic autosomal profile. For this purpose it has been analyzed his genealogical tree – eight saliva samples taken from his relatives and 9 biological micro-traces taken from the surface of fifth personal paper documents – a school certificate, a driving license, a handwritten letter, a communist party notebook and a receipt. DNA Isolated from all biological samples had been amplified using Identifiler and Yfiler kits. PCR products had been analyzed with ABI Prism 3100. For revealing the genealogical origins of the investigated male person, specific international DNA databases for Y and autosomal STR markers, such as YHRD, Ysearch, OmniPop and ENFSI WG STR Population Database, had been interrogated.

Keywords: genealogical tree, personal documents, most probable genetic profile, historical case, STR databases.



Genotipare Umană în Biocriminalistică și Paleogenetică

Stanciu F, Stoian D. 2006, 162 p., Editura Semne. ISBN 973-624-368-0


Capitolul 1. Introducere în studiul geneticii judiciare și al paleogeneticii umane – 1.1. Scurt istoric, 1.2. Genetica judiciară, 1.3. Paleogenetica umană, 1.4. Limite și diferențe științifice între genetica judiciară și paleogenetica umană.

Capitolul 2. Particularități ce țin de natura probei biologice de proveniența a extractului de ADN – 2.1. Prelevarea și păstrare probelor biologice, 2.2. Surse de ADN uman, 2.2.1. Sângele, 2.2.2. Sperma, 2.2.3. Urina, 2.2.4. Saliva, 2.2.5. Țesuturi ale organelor interne, 2.2.6. Țesutul tegumentar, 2.2.7. Țesutul osos, 2.2.8. Țesutul dentar, 2.2.9. Firul de păr, 2.2.10. Alte potențiale surse, 2.3. Variații cantitative ale ADN-ului, 2.4. Factori și procese ce concură la degradarea probelor biologice, respectiv a acizilor nucleici, 2.4.1. Factori degradatori ante-mortem, 2.4.2. Factori degradatori post-mortem.

Capitolul 3. Markeri genetici – 3.1. Definirea conceptului de marker genetic, 3.2. Clasificarea markerilor, 3.3. Scurtă introducere în metodele și tehnicile de identificare ale markerilor moleculari ADN, utilizate în paleogenetica umană și biocriminalistică, 3.3.1. Izolarea ADN-ului, 3.3.2. Restricția enzimatică, 3.3.3. Analiza spectofotometrică și fluorometrică, 3.3.4. Electroforeza, 3.3.5. Hibridizarea moleculara (Sothern Blotting), 3.3.6. Reacția de polimerizare în lanț (PCR), 3.3.7. Secvențierea, 3.4. Markeri moleculari ADN uzitați în studiile de genotipare umană, 3.4.1. Introducere în studiul microsateliţilor (STR), 3.4.2. Markeri moleculari ADN mitocondriali, 3.4.3. Markeri moleculari ADN nucleari.

Capitolul 4. Aspecte finale ale studiilor de genetică judiciară și paleogenetică umană – 4.1. Autenticitatea rezultatelor, 4.1.1. Surse de contaminare, 4.1.2. Eliminarea contaminării, 4.1.3. Validarea rezultatelor, 4.2. Utilitatea markerilor moleculari în studiile de paleogenetica umană și biocriminalistică, 4.2.1. Arbori filogenetici și ceasurile moleculare, 4.2.2. Diagnostic post-mortem, 4.2.3. Profilul fenotipic, 4.2.4. Identificare de persoane, 4.2.5. Testul de paternitate, 4.3. Considerente etice ale studiilor de genetică judiciară și paleogenetică umană, 4.4. Predicții cu privire la evoluția metodelor de studiu în biocriminalistică și paleogenetică umană.

Capitolul 5. Norme și legi – 5.1. Valoarea probatorie şi atribuirea profilului ADN în Criminalistică, 5.1.1. Atribuirea profilului ADN, 5.1.2 Baze de date ADN, 5.2. Metoda identificării profilului ADN – mijloc de probă, 5.2.1. Probațiunea în procesul penal pe baza profilului ADN, 5.2.2. Metoda identificării profilului ADN – mijloc de probă în procesul civil, 5.3. Reglementari internaționale privind investigația criminalistică pentru identificare pe baza profilului ADN, 5.3.1. Reglementari în legislația SUA privind identificarea biocriminalistică a profilului ADN, 5.3.2. Reglementări în legislația europeana privind identificarea biocriminalistică pe baza profilului ADN.




The allelic frequencies analysis of two protein markers and several DNA-STR markers in human populations

Duţă-Cornescu G, Stoian V, Stanciu F, Simon-Gruiţă A, Rodewald A. Proceedings GSP 2005 – International Workshop on Genomic Signal Processing; p.143-148.


The genetic discipline cannot be uncoupled from bio-statistics, the tools to handle and analyze the large amount of data that are obtained from DNA, RNA and protein projects. The mathematics and bio-statistics give the genetic researcher the possibility to understand the genetic data, to interpret and to obtain maximum results from minimum data. The human race is characterized by variability, by polymorphisms. A polymorphism is a mendelian character which is present in at least two phenotypes in population, from which none is rare (i.e. none appears with a frequency lower then 1%-2%). At the beginning the protein polymorphisms were used in population genetic studies, but there relatively low variability and the need of large amounts of biologic material made them hard to use in large scale genetic analysis. In 1978 the first DNA polymorphism was discovered (the B – globin gene). After that a cascade of types of DNA markers came, RFLP (Restriction Fragment Length Polymorphism), VNTR (Variable Number Tandem Repeats) and STR (Short Tandem Repeats), and the analysis of the genetic structure of human populations became easy, the challenging part for a biologist being now the interpretation, the formulation of an equation in which all the data to be present This was possible by creating a mathematical model, a representation of the biological processes, in which both observed laboratory data and expected data are described in quantitative way.
In this paper, the authors present a large picture of how mathematics and statistic help a researcher to give a meaning of his genetic observation. We used the polymorphism of two proteins (Haptoglobin and Transferrin) and two STR – DNA markers to make a population survey and to compare the genetic structure of Romanian population with other European and non-European population. The data were interpreted in statistical method, under Hardy-Weinberg condition, using X tests. Also, using several other STR DNA markers and math methods we exemplify bow linkage analysis can be a powerful tool for prenatal diagnostic of different genetic disorders and for finding new genes.