The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization

Turchi C, Stanciu F, Paselli G, Buscemi L, Parson W, Tagliabracci A. Forensic Sci Int Genet. 2016 Sep;24:136-142. doi: 10.1016/j.fsigen.2016.06.013. Epub 2016 Jun 30. PMID: 27414754.


To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%).

The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries.

High haplotype diversity (0.993) and nucleotide diversity indices (0.00838 ` 0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population.

Keywords: Mitochondrial DNA, Forensic database, Haplogroup, Romanians



mtDNA control region forensic database in the Romanian population and deep investigation of the most frequent haplotypes

Turchi C, Stanciu F, Tagliabracci A, „mtDNA control region forensic database in the Romanian population and deep investigation of the most frequent haplotypes”, Poster at DNA in Forensics 2014. 9th Y-User Workshop and 6th EMPOP meeting. Abstract book, Brussels 14-16 mai 2014, P33, p.110.


Romanian population is composed of 88.92% Romanians, 6.5% Hungarians, 3.29% Roma and 1.29%  other populations (2011 census). From the historical point of view Romanians are an admixture of local and surrounding populations. Romania can be ided in 4 major historical regions, each with its particular populations influence: Moldavia that during the past was the Eastern Europe border in front of Mongol,  Tatar and Ottoman invasions; Transylvania, where the Austro-Hungarian Empire had an important influence;  Wallachia, whose population is the result of Roman Empire conquests, the Slav migration from the north, and the Turkish south-east influence; and Dobruja, in the past conquered by Greeks, Romans, Tatars, Turks and Slavs. Previous genetic studies made on Y-STR markers suggest that the Slavic influences were dominant and from the perspective of general population (autosomal markers) the dominant influences were Slavic, Italian, Greek and Turkish; unfortunately there are limited data on mtDNA variation in the general population. In order to analyze the heterogeneity of Romanian population from a mitochondrial lineages point of view and to establish appropriate mtDNA forensic database, we generate a high-quality mtDNA control region data from a Romanian population sample. ~400 healthy Romanian donors, from different regions of the country, were subjected to control region sequence analysis. Two PCR fragments were sequenced by using ten different sequencing primers, according to forensic standards. To ensure high data quality at least a double reading of each site and an independent evaluation of electropherograms were performed. A phylogenetic approach for a posteriori analysis of the mtDNA types was applied and sequences were aligned according to the mitochondrial phylogeny. To increase the utility of mtDNA analysis in forensics, the Personal Genome Machine was used to sequence complete mtGenomes of the most common haplotypes, in order to investigate in more detail specific coding region variations.